文章编号: 0253-2239(2010)01-0001-06

能动镜中力驱动器的实现及性能测试

凡木文1,2 邓建明1,2 周 睿1,2 李 梅1,2

(¹中国科学院光电技术研究所自适应光学研究室,四川 成都 610209; ²中国科学院自适应光学重点实验室,四川 成都 610209

摘要 用于能动镜中的力驱动器采用直流电机作为驱动源,经减速器后利用滚珠丝杆传动加弹簧组件实现纳米级 微位移,而采用丝杆副实现自锁。驱动器基于拉压力传感器实现闭环控制,高增益的 PID 控制器克服了机械摩擦 的微动特性获得比较好的线性度。用4个力驱动器和3个刚性支撑组成了一个能动镜原型样机,光学干涉仪测量 结果表明,力驱动器平均位移分辨力约为 10 nm、最大可变形量达±8 um、最大驱动力达±700 N。实验结果证明 了力驱动器应用于能动镜驱动器的可行性,为能动镜的实用化提供了实验依据。

关键词 自适应光学;能动镜;力驱动器;微位移驱动器;滚珠丝杆;PID 控制

中图分类号 TH751 文献标识码 A doi: 10.3788/AOS20103001.0001

The Design and Performance Test of the Force Actuator **Developed for the Active Mirror**

Fan Muwen^{1,2} Deng Jianming^{1,2} Zhou Rui^{1,2} Li Mei^{1,2}

¹ The Laboratory on Adaptive Optics, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China

² The Key Laboratory on Adaptive Optics, Chinese Academy of Sciences, Chengdu, Sichuan 610209, China

Abstract The force actuator developed for the active mirror uses DC-motor as driving source. Nanometer microdisplacement driving is achieved by means of gearbox, ball-screw-driven stage and groups of springs. Self-locking is performed by leading screw pair. The high gain PID controller based on pull-push force sensor in the feedback path can provide a sufficiently high loop gain to suppress effect of friction on micro-dynamic characteristics so that an excellent linearity is achieved. The actuators were tested in an active mirror prototype with four same actuators and three rigid supports. The measurement of micro-displacement was tested by an optical interferometer. The results of the prototype show that the average displacement resolution is 10 nm, max stroke is $\pm 8 \mu$ m, max driving force is ± 700 N. The experimental results show that the force actuator is suitable to drive an active mirror. This also provides basis for further optimization of actuator developed for active mirror.

Key words adaptive optics; active mirror; force actuator; micro-displacement actuator; ball screw; PID control

1 弓[言

能动镜(Active Mirror)是利用薄镜面背后的驱 动器使镜面产生微小弹性变形来补偿镜面由于重力 变形、温度梯度产生的变形以及加工安装误差等引起 的光学系统的波前误差[1~3]。国外大口径望远镜,如 10 m 口径的 KECK [,KECK [[^[4],以及口径 3~8 m 望远镜,如 VLT^[5],SOAR^[6],SUBARU^[7]等,以及美 国航空航天局(NASA)研制的下一代空间望远镜 NGST,都采用了能动镜技术克服镜面变形。

而驱动器是能动镜中关键部件之一,要求驱动 器具有纳米级的分辨力,成百上千牛顿的负载驱动 能力,以及小的体积和低的成本[1~7]。在能动镜驱

E-mail: jimmyfan2002@sohu.com

收稿日期: 2009-02-09; 收到修改稿日期: 2009-04-14

基金项目:国家 863 计划资助课题。

作者简介:凡木文(1977—),男,硕士,助理研究员,主要从事自适应光学电控方面的研究。

30 卷

动器中应用比较多的是位移驱动器和力驱动器,而 力驱动器因为同时拥有可控微位移分辨力高、驱动 力大等优点,越来越多的被能动镜驱动器研究者所 选择^[3~9]。

本文介绍了一种分辨力达平均步距约 10 nm、 行程达±8 μm、可自锁、具有±700 N的推拉负载驱 动能力的微位移力驱动器。为了验证力驱动器应用 于能动镜中的性能,由4个力驱动器和3个刚性支 撑组成了一个能动镜原型样机,在常温下利用光学 干涉仪获得了实验结果。

2 力驱动器组成及工作原理

力驱动器的组成框图如图 1 所示,主要包括机 械传动部分和电机控制驱动部分。因为需要产生较 大的承载力,采用了直流电机作为驱动源,直流电机 的旋转经过减速器后,利用滚珠丝杆进行传动,丝杠 的转动使得滚珠沿螺旋滚道滚动,带动螺母轴向移 动,它具有较小的摩擦力,相近的动、静摩擦系数,从 而削弱了局部爬行现象,经过预紧可以消除轴向移 动产生的间隙,从而提高传动精度和传动机械效 率^[10,11],之后再选择传统的弹簧作为柔性弹性体, 期望获得较好的线性。选用的丝杠螺母副不但用于 将电机产生的旋转运动转换为直线运动,即将扭矩 转化为压力或者拉力,同时还可以实现位移细分与 自锁功能。高刚度的机械系统是获得纳米级精度的 前提。

图 1 力驱动器结构简图及系统组成框图。 (a)机械简图;(b)系统框图

Fig. 1 Force actuator construction and system diagram.(a) Mechanism schematic; (b)system block diag-ram

系统中采用了对力的精确控制,期望在线性范 围内得到高分辨力的微位移控制,因此系统采用了 基于力的闭环控制。结构中选用了拉压力传感器对 负载拉压力进行采样,输出的微弱电压信号经过微 信号放大器放大后再经过 A/D转换成数字信号,在 DSP 控制器中与给定的拉压力作 PID 误差控制以 输出脉冲宽度(PWM)信号到电机驱动器实现功率 放大,从而驱动直流电机工作。其中拉压力传感器 采用高线性度高灵敏度的电阻应变称重传感器,其 满量程为±700 N(对应拉力、压力),零点温度漂移 为 0.05%,非线性为 0.05,从而保证了在常温下对 力采样的精度和线性度。这种拉压力传感器的应变 片在受力时产生的阻值变化较小,组成应变电桥来 输出差分信号,其输出阻抗为(350±0.5%)Ω,对于 这种应变信号的放大,模拟器件公司生产的一种高 性能应变测量信号调节器 1B31 非常合适。利用标 称砝码对力传感器和放大器进行标定,使之在满量 程±700 N下,1B31 对应输出±10 V。选用的 14 位的 A/D 转换芯片 AD7865 保证了转换精度达每 步0.085 N(共16383 步), 而选择的 DSP 控制芯片 为 TI 公司的 TMS320LF2407A,则利用了其方便的 运算功能和 PWM 输出口。电机驱动器则选用 LMD18200 驱动 H桥,方便地实现电机的速度、方 向调节。

3 微机械特性及其高增益 PID 控制

基于滚珠丝杠驱动机构的闭环控制系统实现纳 米级分辨率存在一定的困难,这主要是因为定位精 度的提高受到机构中存在的弹性环节、摩擦和间隙 等因素的影响^[12,13]。虽然通过施加预载荷可以消 除滚珠丝杠副的轴向间隙,增加传动机构的刚度,但 同时也增加了系统的摩擦力。一方面,摩擦影响着 系统的动态响应特性并导致稳态误差,同时摩擦界 面也使得滚珠丝杠副的接触刚度有所降低;另一方 面,由于滚珠丝杠副的接触刚度降低和弹性接触变 形问题的存在,减低了伺服系统的刚度,使伺服系统 的动态性能变坏,并对机械谐振的衰减性不好。由 于丝杠的微动特性和宏观运动特性不同,而且在微 动条件下机构的特性参数是变化的,并且具有一定 的不确定性,所以控制器的设计应当采用变结构控 制器。

根据前面的分析以及控制实验,提出了一种基 于误差的增益自调节控制器(GSTBE)。该方法仍 然采用传统的 PID 控制器的结构,只是将比例增益 k_p 和积分增益 k_i 分别乘以与误差信号 e 相关的增 益调节因子。该调节因子能随着误差的变化动态地 调整控制器的增益。当误差变大时,减小控制器的 增益,以避免数字控制发生饱和现象,提高系统的稳 定性,并使之不超调;当误差变小时,增大控制器的 增益,以弥补进给机构的微观刚性的不足,减小其微 动条件下库仑摩擦和微弹性特性对系统刚度和运动 精度的影响。实际应用中表明,该控制器能够在比 较大的范围内稳定运行,并具有足够的控制精度。

力驱动器性能测试 4

首先,开发了一个力驱动器,其实物照片如图 2

图 2 力驱动器实物照片 Fig. 2 Photo of force actuator

所示, 力驱动器长 275 mm, 直径 60 mm, 重量 2000 g。对于单个力驱动器的性能测试,主要进行 了驱动力全程测试、驱动力可控制精度测试、力重复 性、稳定性测试。实验中把传感器上部螺纹和制作 的外部锁死机构紧密固定使之无绝对位移和相对位 移,其试验结果如图3、图4和图5所示。

图 4 驱动力分辨力测试结果。(a)500 步,间隔 3 步;(b)1000 步,间隔 3 步;(c)2000 步,间隔 3 步 Fig. 4 Test results of force resolution. (a) 500 pulses, 3 steps; (b) 1000 pulses, 3 steps; (c) 2000 pulses, 3 steps

图 5 驱动力稳定性测试结果。(a)1000 步时闭环稳定性;(b)3500 步时闭环稳定性

Fig. 5 Test results of force stability. (a) Closed-loop stability in 1000 pulses; (b) closed-loop stability in 3500 pulses 图 3 为驱动力全程测试结果,可以看出,力驱动 器实现了一700 N(拉力,力的方向指离镜体,弹簧 体被拉伸)到+700 N(压力,力的方向指向镜体,弹 簧体被压缩)的大范围负载能力。可见,力驱动器的

负载驱动能力非常强,这对于能动镜来说非常重要, 它避免了进一步减小能动镜镜面厚度所带来的加工 制造困难。并且,在全程试验过程中还可以发现其 线性度非常好。图 4 为在不同的区间递增 3 步的方

式观察力的变化情况,可见在不同的力区间都实现 了约 0.4~1 N 的分辨力。图 5 为闭环之后力随时 间的稳定性测试结果,可见在不同的力区间都实现 了与分辨力相当的力的稳定性。最后,还做了力驱 动器断电自锁的稳定性试验,得到了 4 h 内优于2 N 的结果。每个试验都经过重复测试,发现其重复一 致性非常高。

5 能动镜原型样机性能测试

为了验证力驱动器在能动镜中使用的性能,开 发了一个能动镜原型样机,其结构简图如图 6 所示, 能动镜镜面半径 R_m 为 200 mm,厚度为 10 mm。1 个力驱动器 A1 布置在镜面中心,另外 3 个相同的 力驱动器 A2~A4 和 3 个刚性支撑 P1~P3 平均分 布在半径 R_a 为 72 mm 的同心圆上。

Fig. 6 Active mirror prototype. (a)Structure schematic; (b)configuration of 4 actuators and 3 rigid support

Fig. 7 Mirror surface is deformed by the central actuator. (a) push; (b) pull

利用 WYKO 干涉仪对镜面变形进行检测得到波 面数据,再与初始面形对减即可得到变形量。和力驱 动器驱动力一样,进行了变形量全程试验、变形量控 制精度试验、变形量重复性、稳定性试验,实验结果如 图 7、图 8、图 9 和图 10 所示。图 7 为中心驱动器加 拉力和压力时能动镜面形,中心力驱动器正向移动 4500 步,即镜面受压力后中心变形量为+4.633 μ m, 中心力驱动器负向移动 4500 步,即镜面受拉力后中 心变形量为-4.650 μ m。图 8 为镜面可变形量全程 测试,为了保证力驱动器不超过最大值,采用了光电 对管对最大位移实现限位,实验中只做到±6500 步 (因为采用 14 位 AD,最大可达±8191步)位置,可以 发现全程位移在±8 μ m 以上,并且线性度非常好。 图 9 为在不同的变形区间以递增5 步和 10 步来观察 变形量分辨力的情况,发现5 步的时候能够分辨约 6 nm,而 10 步分辨力约12 nm。图 10 则为 1000 步推 力时加电闭环和断电自锁随着时间的稳定性变化曲 线,其加电闭环 90 min 内稳定性在 15 nm 以内,

图 8 变形量全程测试结果 Fig. 8 Test results of deformability in full range

图 9 变形量分辨力测试结果。(a)1000步,间隔 5步;(b)4500步,间隔 10步;(c)-4500步,间隔 10步 Fig. 9 Test results of deformable resolution. (a) 1000 pulses,5 steps; (b)4500 pulses,10 steps; (c)-4500 pulses,10 steps

图 10 变形量稳定性测试结果(a)闭环;(b)断电自锁

Fig. 10 Test results of deformable stability. (a)Closed-loop; (b)self-clocking

而断电自锁 2 h 内稳定性在 30 nm 以内。每个试验 都经过重复测试,发现其重复一致性非常高。

最终,可以给出这种力驱动器的性能如表1所示,基本达到了国外能动镜驱动器性能水平,国外主要能动镜主要参数如表2所示。

表 1 力驱动器主要参数

Table 1 Main parameters of force actuator

Property Data (Condition		
Positioning resolution /nm	≪15	
Maximum driving force / N	±700	
Maximum deformation $/\mu m$	± 8	
Position keeping way position	Self-holding	
Keeping accuracy /nm	\leqslant 50 (4 hours)	
Driving way	DC motor+ball screw	
Size:Length×Diameter	275×60	
Weight /g 2000		

6 结 论

在"直流电机+滚珠丝杆"的驱动机构上采用基 于力传感器实现闭环控制,通过对力的控制实现了 在大驱动负载力的条件下获得高精度力的控制。实 验表明,高增益的PID控制器克服了微动特性,获 表 2 国外典型能动镜驱动器性能 Table 2 Key characteristics of the actuator in

KECK and NGST

	Actuator		
Active mirror	Developer	Displacement	Actuating
		resolution / nm	force $/N$
W. M. KECK	University of	50	1500
	California		
NGST	New Focus	20	22
	Inc.		
NGST	University of	10	20~30
	Arizona		

得了很好的线性度和控制精度。同时在能动镜原型 样机上实现了高精度高线性度的微变形控制,其最 大负载能力达±700 N,而分辨力达 10 nm,变形量 达±8 μm,实验结果证明了该力驱动器应用于能动 镜驱动器的可行性,这也为能动镜驱动器的进一步 优化提供了依据。

致谢 对中国科学院光电技术研究所的姜文汉院 士、李新阳研究员在实验中给予的大力支持和帮助, 在此表示感谢。

参考文献

- Li Xinnan, Zhang Zhenchao *et al.*. Tentative fabrication test for large aperture thin astronomical mirror [J]. *Acta Optica Sinica*, 2005, 25(7): 965~969 崔向群,李新南,张振超等.大口径天文薄镜面磨制试验[J]. 光学学报, 2005, 25(7): 965~969
- 2 Yang Licheng, Ling Ning. Development of the active thin mirror [J]. Laser & Optoelectronics Progress, 2002, 39(2): 10~14 杨李成,凌 宁. 发展中的能动薄镜技术 [J]. 激光与光电子学 进展, 2002, 39(2): 10~14
- 3 Zhu Peng, Deng Jianming. The design and capability test of the single actuator using in active supporting system of large primary mirror of telescopes[J]. Optical Instruments, 2008, 30(1): 1~5 朱 鹏,邓建明.大口径望远镜主镜能动支撑驱动器的个体设计和性能测试[J]. 光学仪器, 2008, 30(1): 1~5
- 4 D. T. Gavel, S. S Oliver. Performance predictions for the Keck telescope adaptive optics system [C]. SPIE, 1999, 2534: 401~411
- 5 M. Fritz, H. Norber. Adaptive optics for the European very large telescope [C]. SPIE, 1991, **1542**: 283~292
- 6 N. Conrad, M. C. Zolcinski, K. Michael *et al.*. The active primary mirror system for the SOAR telescope[C]. SPIE, 2004, 5489: 870~880
- 7 T. Naruhisa, U. Tomonori, T. Wataru *et al.*. Performance of active mirror support of SUBARU telescope[C]. SPIE, 2003, 4837: 675~680
- 8 Cui Xiangqun, Gao Bilie, Wang Daxing *et al.*. A new polishing technology for large diameter and deep aspherical mirror[J]. *Acta Optica Sinica*, 2005, 25(3): 402~407

崔向群,高必烈,汪达兴等.一种大口径大非球面度天文镜面磨

制新技术[J]. 光学学报, 2005, 25(3): 402~407

报

9 Tan Fanjiao, Qiao Yanfeng, Li Yaobin *et al.*. Finite element analysis for surface shape deformation of photo-electronic theodolite primary mirror[J]. Acta Optica Sinica, 2008, 28(4): 756~763

谭凡教,乔彦峰,李耀彬等.光电经纬仪主镜面形变化的有限元分析[J].光学学报,2008,28(4):756~763

- 10 Chen Jianping, Shen Lincheng. Model and control technology for machining large-diameter optical aspheric mirror[J]. *Chinese J*. *Lasers*, 2007, 34(12): 1705~1709
 陈建平,沈林成.大口径非球面镜加工建模与控制技术[J].中 国激光, 2007, 34(12): 1705~1709
- 11 Li Jianghao, Chen Jiapin, Li Zhenbo. Influence of structure design and control on movement precision of millimeter-scale omni-directional mobile microrobot [J]. Optics and Precision Engineering, 2008, 16(6): 7500~7506 李江昊,陈佳品,李振波. 毫米级全方位微机器人结构设计与控

制对运动精度的影响[J]. 光学精密工程,2008,16(6): 7500~7506

- 12 Lu Lihua, Guo Yongfeng, Tachikawa Hiroyuki *et al.*. High gain PID controller for nanometer positioning [J]. *Optics and Precision Engineering*, 2007, **15**(1): 63~68 卢礼华,郭永丰,大刀川博之等. 高増益 PID 控制器实现纳米定 位[J]. 光学精密工程, 2007, **15**(1): 63~68
- 13 Li Guoping, Miao Xinli. Design and test of a micro-displacement actuator [J]. Optics and Precision Engineering, 2005, 13(6): 332~338
 - 李国平,苗新利. 一种微位移促动器的设计和检测[J]. 光学精密 工程, 2005, 13(6): 332~338.